Let H be a Hilbert space. From Riesz' theorem we know that the conjugate linear map
L: H→H', v (ov: w→ (v, w))
is an isometry.
(a) Use this map L to find a canonical conjugate linear isometry K: H'H".
(b) Show that KoL=j: H→ H", the canonical inclusion into the bidual space defined by j(x): o→ o(x).