The following power series have a finite radius of convergence. For each series, calculate A, defined as follows: if the interval of convergence is (a,b), then Z = sin a + sin b if the interval of convergence is (a, b). then Z = cos a + sin b if the interval of convergence is (a, b), then Z= sin a + cos b if the interval of convergence is [a, b], then 2 = cosa + cos b and let A be the sum of the Z. (A) 1 (2-1)" 3 Vn 1 (B) (c + 3)" (-3) (C) 1 (x - 5) 27 9"n M=1 1 (D) 1 (-9)" b) (< + 7)2n (Ε)Σ 1 (3-9) (n2 + 1)3" N=1 Then value of sin(3A) is
0 -0.985
O 0.618
O 0.760
O 0.795
O 0.951
0 -0.689
O 0.386
0 -0.870