If α, β are the roots of the equation x²−(5+3√ ˡᵒᵍ³⁵ −5√ ˡᵒᵍ⁵³)+3(3(ˡᵒᵍ³⁵)¹/³ −5(log53) ²/³−1)=0 then the equation, whose roots are
α+ 1/β and β+ 1/α ,
(A) 3x² – 20x – 12 = 0
(B) 3x² – 10x – 4 = 0
(C) 3x² – 10x + 2 = 0
(D) 3x² – 20x + 16 = 0