Respuesta :
The solution to the quadratic equation given by:
6x^2+2x-20=0
will be:
6x^2+2x-20=0
factoring the above we get:
6x^2+12x-10x-20=0
6x(x+2)-10(x+2)=0
(6x-10)(x+2)=0
hence:
6x=10
x=10/6=5/3
or
x+2=0
x=-2
Thus the answer is:
x=5/3
x=-2
6x^2+2x-20=0
will be:
6x^2+2x-20=0
factoring the above we get:
6x^2+12x-10x-20=0
6x(x+2)-10(x+2)=0
(6x-10)(x+2)=0
hence:
6x=10
x=10/6=5/3
or
x+2=0
x=-2
Thus the answer is:
x=5/3
x=-2
Answer:
[tex]x=-2[/tex], [tex]x=\frac{5}{3}[/tex]
Step-by-step explanation:
[tex]6x^2 + 2x - 20 = 0[/tex]
In the given equation all terms are divisible by 2.
[tex]3x^2 + x - 10 = 0[/tex]
Product is 3 times -10 = -30 and sum is 1
-5 times 6 is -30
-5+6 is 1, factors are -5 and 6
Break the middle term using the factors
[tex]3x^2-5x+6x - 10 = 0[/tex]
Group first two terms and last two terms
[tex](3x^2-5x)+(6x - 10) = 0[/tex]
Factor out GCF from each group
[tex]x(3x-5)+2(3x - 5) = 0[/tex]
Factor out 3x-5
[tex](x+2)(3x-5)= 0[/tex]
Set each factor =0 and solve for x
[tex]x+2=0 , x=-2[/tex]
[tex]3x-5=0, 3x=5[/tex]
[tex]x=\frac{5}{3}[/tex]