What transformation matrix would result in a 300 degrees counterclockwise rotation about the origin?

i cant type all of the options, but they all look like fractions inside brackets, some with square root signs.

Respuesta :

Mamasu
For rotation by an angle, θ, in the counter-clockwise direction about the origin, the transformation matrix is given by 
     [tex]\begin{pmatrix}cos\:\theta &-sin\:\theta \\ sin\:\theta &cos\:\theta \end{pmatrix}[/tex]

The given angle is θ=300°. 

The values we need are
     [tex]cos\left(300^{\circ} \right)=\frac{1}{2}[/tex]
     [tex]sin\left(300^{\circ} \right)=-\frac{\sqrt{3}}{2}[/tex]

Substituting these into the given transformation matrix, we have
     [tex]\begin{pmatrix}\frac{1}{2}&\frac{\sqrt{3}}{2}\\ -\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}[/tex]

the answer is B

hope this helps :)