Respuesta :

First you must know this.
[tex] {ax}^{2} + bx + c = 0[/tex]
Then, you will know that a=-2 b=7 c=-5.
Now, use the quadratic formula.
[tex] x = \frac{ \: - b + - \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
[tex]x = \frac{ \: - 7 + - \sqrt{ {7}^{2} - 4( - 2)( - 5) } }{2 \times - 2} [/tex]
You will then get two values for x.
[tex]x = 1 \: and \: x = 2.5[/tex]
there you go! That's the answer.
To find the solutions to this equation, we can apply the quadratic formula. This quadratic formula solves equations of the form ax^2 + bx + c = 0
                      x = [ -b ± √(b^2 - 4ac) ] / (2a)
                      x = [ -7 ± √((7)^2 - 4(-2)(-5)) ] / ( 2(-2) )
                      x = [-7 ± √(49 - (40) ) ] / ( -4 )
                      x = [-7 ± √(9) ] / ( -4)
                      x = [-7 ± 3 ] / ( -4 )
                      x = 7/4 ± -3/4
The answers are 7/4 + 3/4 = 5/2 and 1.