Respuesta :

tonb
-4/5 is correct, since (-4/5)³ = -4*-4*-4/(5*5*5) = -64/125 

The given expression is :[tex] \sqrt[3]{\frac{-64}{125}} [/tex]

64 can be written as 4x4x4=[tex] 4^{3} [/tex]

125 =5x5x5=[tex] 5^{3} [/tex]

The given expression can be written as :

[tex] \sqrt[3]{\frac{-64}{125}} =\sqrt[3]{\frac{(-4)^{3}}{5^{3}}} =[( \frac{-4}{5})^{3} }]^\frac{1}{3} [/tex]

Applying power rule of indices :

Powers are multiplied .

[tex] \frac{1}{3} times 3 = 1. [/tex]

= [tex] \frac{-4}{5} [/tex]

The first option [tex] \frac{-4}{5} [/tex] is the right asnwer