Respuesta :
The answer is square root of (3). The solution is listed below
[tex]sin(x)+cot(x)cos(x)= \sqrt{3} \\ \\ sin(x)+ \frac{cos(x)}{sin(x)}*cos(x)= \sqrt{3} \\ \\ \frac{sin^{2} x+cos^{2}x }{sin(x)}= \sqrt{3} \\ \\ \frac{1}{sin(x)}= \sqrt{3} \\ \\ csc(x)= \sqrt{3} [/tex]
[tex]sin(x)+cot(x)cos(x)= \sqrt{3} \\ \\ sin(x)+ \frac{cos(x)}{sin(x)}*cos(x)= \sqrt{3} \\ \\ \frac{sin^{2} x+cos^{2}x }{sin(x)}= \sqrt{3} \\ \\ \frac{1}{sin(x)}= \sqrt{3} \\ \\ csc(x)= \sqrt{3} [/tex]