Determine whether or not 630 is a triangular number. start with the formula t n = n ( n + 1 ) 2 and then use the quadratic formula to make your decision. (a) true or false: 630 is a triangular number:

Respuesta :

Triangular sequence = n(n + 1)/2

If 630 is a triangular number, then:

n(n + 1)/2  = 630

Then n should be a positive whole number if 630 is a triangular number.

n(n + 1)/2  = 630

n(n + 1)  = 2*630

n(n + 1)  = 1260

n² + n = 1260

n² + n - 1260 = 0

By trial an error note that 1260 = 35 * 36

n² + n - 1260 = 0

Replace n with 36n - 35n

n² + 36n - 35n - 1260 = 0

n(n + 36) - 35(n + 36) = 0

(n + 36)(n - 35) = 0

n + 36 = 0   or   n - 35 = 0

n = 0 - 36,   or  n = 0 + 35

n = -36, or 35

n can not be negative. 

n = 35 is valid.

Since n is a positive whole number, that means 630 is a triangular number.

So the answer is True.