Determine whether or not the vector field is conservative. if it is, find a function f such that f = ∇f. if the vector field is not conservative, enter none. f(x, y, z) = 3y2z3 i + 6xyz3 j + 9xy2z2 k

Respuesta :

[tex]\dfrac{\partial f}{\partial x}=3y^2z^3\implies f(x,y,z)=3xy^2z^3+g(y,z)[/tex]

[tex]\dfrac{\partial f}{\partial y}=6xyz^3+\dfrac{\partial g}{\partial y}=6xyz^3[/tex]
[tex]\implies\dfrac{\partial g}{\partial y}=0\implies g(y,z)=h(z)[/tex]

[tex]\dfrac{\partial f}{\partial z}=9xy^2z^2+\dfrac{\mathrm dh}{\mathrm dz}=9xy^2z^2[/tex]
[tex]\implies\dfrac{\mathrm dh}{\mathrm dz}=0\implies h(z)=C[/tex]

[tex]\implies f(x,y,z)=3xy^2z^3+C[/tex]

The potential function exists, so [tex]\mathbf f[/tex] is indeed conservative.