Respuesta :

ANSWER

[tex]\frac{5( \sqrt{11} + \sqrt{3} )} {8} [/tex]

EXPLANATION

The given rational function is

[tex] \frac{5}{ \sqrt{11} - \sqrt{3}} [/tex]

We need to rationalize the denominator by multiplying both the numerator and the denominator by the conjugate of

[tex] \sqrt{11} - \sqrt{3} [/tex]

which is

[tex]\sqrt{11} + \sqrt{3} [/tex]

When we rationalize we obtain:

[tex] \frac{5( \sqrt{11} + \sqrt{3} )}{(\sqrt{11} - \sqrt{3} )( \sqrt{11} + \sqrt{3} )} [/tex]

The denominator is now a difference of two squares:

[tex](a - b)(a + b) = {a}^{2} - {b}^{2} [/tex]

We apply this property to get

[tex]\frac{5( \sqrt{11} + \sqrt{3} )}{( \sqrt{11}) ^{2} - ( \sqrt{3}) ^{2} )} [/tex]

[tex]\frac{5( \sqrt{11} + \sqrt{3} )}{11 - 3} [/tex]

This simplifies to

[tex]\frac{5( \sqrt{11} + \sqrt{3} )} {8} [/tex]

Or

[tex]\frac{5 } {8}\sqrt{11} + \frac{5 } {8}\sqrt{3} [/tex]

Answer:

B

Step-by-step explanation: