Respuesta :
You have written ...
[tex]\dfrac{5k}{6}\times \dfrac{3}{2}k^{3}=\dfrac{5}{4}k^{4}[/tex]
Perhaps you intend ...
[tex]\dfrac{5k}{6}\times \dfrac{3}{2k^{3}}=\dfrac{5}{4k^{2}} = 1.25k^{-2}[/tex]
[tex]\dfrac{5k}{6}\times \dfrac{3}{2}k^{3}=\dfrac{5}{4}k^{4}[/tex]
Perhaps you intend ...
[tex]\dfrac{5k}{6}\times \dfrac{3}{2k^{3}}=\dfrac{5}{4k^{2}} = 1.25k^{-2}[/tex]
Answer:
[tex]\Rightarrow \dfrac{5}{4k^2}[/tex]
Step-by-step explanation:
Given: [tex]\dfrac{5k}{6}\times \dfrac{3}{2k^3}[/tex]
We are given rational expression and to simplify it.
First we factor [tex]k^3\rightarrow k\cdot k\cdot k[/tex]
[tex]\Rightarrow \dfrac{5k}{6}\times \dfrac{3}{2k\cdot k\cdot k}[/tex]
cancel the like terms from numerator and denominator
[tex]\Rightarrow \dfrac{5}{2}\times \dfrac{1}{2k\cdot k}[/tex]
[tex]\Rightarrow \dfrac{5}{4k^2}[/tex]
Hence, The product of [tex]\dfrac{5k}{6}\times \dfrac{3}{2k^3}[/tex] is [tex]\Rightarrow \dfrac{5}{4k^2}[/tex]