Respuesta :
Just add these like anything by combining like terms. When you do you will get [tex] x^{2} +x-14[/tex]
Answer: D. [tex](f + g)(x)=x^2+ x -14[/tex]
Step-by-step explanation:
The given functions : [tex]f(x) = 5x - 6[/tex] and [tex]g(x) = x^2 - 4x -8[/tex]
We know that , According to the Algebra of function , we have
[tex](f + g)(x)= f(x)+g(x)[/tex]
Substitute the values of f(x) and g(x) , we get
[tex](f + g)(x)= 5x - 6+ x^2 - 4x -8[/tex]
Combine like terms,
[tex](f + g)(x)=x^2+ 5x- 4x - 6-8[/tex]
Simplify,
[tex](f + g)(x)=x^2+ x - (6+8)[/tex]
[tex](f + g)(x)=x^2+ x -14[/tex]
Hence, [tex](f + g)(x)=x^2+ x -14[/tex]
Thus , the correct answer is option D. [tex](f + g)(x)=x^2+ x -14[/tex]