If f(x) = 5x – 6 and g(x) = x2 – 4x – 8, find (f + g)(x).
A.(f + g)(x) = 6x2 – 4x – 14
B.(f + g)(x) = x2 – 9x – 2
C.(f + g)(x) = x2 – x – 2
D.(f + g)(x) = x2 + x – 14

Respuesta :

Just add these like anything by combining like terms.  When you do you will get [tex] x^{2} +x-14[/tex]

Answer: D. [tex](f + g)(x)=x^2+ x -14[/tex]

Step-by-step explanation:

The given functions : [tex]f(x) = 5x - 6[/tex] and [tex]g(x) = x^2 - 4x -8[/tex]

We know that , According to the Algebra of function , we have

 [tex](f + g)(x)= f(x)+g(x)[/tex]

Substitute the values of f(x) and g(x) , we get

[tex](f + g)(x)= 5x - 6+ x^2 - 4x -8[/tex]

Combine like terms,

[tex](f + g)(x)=x^2+ 5x- 4x - 6-8[/tex]

Simplify,

[tex](f + g)(x)=x^2+ x - (6+8)[/tex]

[tex](f + g)(x)=x^2+ x -14[/tex]

Hence, [tex](f + g)(x)=x^2+ x -14[/tex]

Thus , the correct answer is option D. [tex](f + g)(x)=x^2+ x -14[/tex]