To find the the expression that gives the value of [tex]x[/tex] we are going to proceed as follows:
[tex]5x+3y=-18[/tex] equation (1)
[tex]2x-4y=-28[/tex] equation (1)
Step 1. solve for [tex]y [/tex] in equation (2)
[tex]2x-4y=-28[/tex]
[tex] -4y=-28-2x[/tex]
[tex]y= \frac{-28-2x}{-4} [/tex]
[tex]y=7+ \frac{1}{2} x[/tex] equation (3)
Step 3. Replace equation (3) in equation (1) and solve for [tex]x[/tex]
[tex]5x+3y=-18[/tex]
[tex]5x+3(7+ \frac{1}{2} x)=-18[/tex]
[tex]5x+21+ \frac{3}{2} x=-18[/tex]
[tex] \frac{13}{2} x=-39[/tex]
[tex]x= \frac{-39(2)}{(13)} [/tex]
[tex]x=-6[/tex]
We can conclude that the expression that gives the value of [tex]x[/tex] is: [tex]x=-6[/tex]