same as before, since 180° is π, how much is 30° in radians?
[tex]\bf \begin{array}{ccll}
de grees&radians\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
180&\pi \\\\
30&x
\end{array}\implies \cfrac{180}{30}=\cfrac{\pi }{x}\implies x=\cfrac{30\pi }{180}\implies x=\cfrac{\pi }{6}\\\\
-------------------------------\\\\
\stackrel{angular~velocity}{w}=\cfrac{\stackrel{central~angle}{\frac{\pi }{6}}}{\stackrel{time}{1~s}}\implies w=\cfrac{\pi }{6}~\frac{radians}{seconds}[/tex]
[tex]\bf \textit{arc's length}\\\\
s=r\theta ~~
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad radians\\
------\\
r=8\\
\theta =\frac{\pi }{6}
\end{cases}\implies s=8\cdot \cfrac{\pi }{6}\implies s=\cfrac{4\pi }{3}
\\\\\\
\stackrel{linear~velocity}{v}=\cfrac{\stackrel{arc's~length}{\frac{4\pi }{3}}}{\stackrel{time}{1~s}}\implies v=\cfrac{4\pi }{3}~\frac{cm}{seconds}[/tex]