Respuesta :

y = x² + 6x + 5
   a=1, b+6, c=5
Axis of Symmetry: x = -b/2a
                                 = -(6)/2(1)
                                 = -3

Vertex: f(-3) = (-3)² + 6(-3) + 5
                   =    9    +  -18  +5
                   = -4

(-3. -4)

Answer:

The vertex of the graph is (-3, -4).

Step-by-step explanation:

Given quadratic function is,

[tex]y=x^2+6x+5[/tex]

For finding the vertex we need to change the given expression in the form of [tex]y=a(x-h)^2+k[/tex],

For this we must add and subtract the square of the coefficient of middle term,

Since, the half of 6 = 3

Add and subtract the square of 3 in the right side of the equation,

[tex]y=x^2+6x+5+9-9[/tex]

[tex]y=(x^2+6x+9)+5-9[/tex]

[tex]y=(x+3)^2-4[/tex]

We know that,

For the function [tex]y=a(x-h)^2+k[/tex]

Vertex = (h,k)

By comparing,

The vertex of the given function is (-3, -4).