Respuesta :
Using the law of cosine for Triangle KJL, we can write:
[tex] j^{2} = k^{2} + l^{2}-2(k)(l)cos(J) \\ \\ 2(k)(l)cos(J)=k^{2} + l^{2}- j^{2} \\ \\ cos(J)= \frac{k^{2} + l^{2}- j^{2}}{2(k)(l)} [/tex]
Using the values of k,j and l, we can write:
[tex]cos(J)= \frac{ 4^{2} + (2.89)^{2} - 3^{2} }{2(4)(2.89)} \\ \\ cos(J)= 0.664 \\ \\ J= cos^{-1}(0.664) \\ \\ J=48.39 [/tex]
Rounding to nearest integer, the measure of angle J will be 48 degrees.
So option B gives the correct answer
[tex] j^{2} = k^{2} + l^{2}-2(k)(l)cos(J) \\ \\ 2(k)(l)cos(J)=k^{2} + l^{2}- j^{2} \\ \\ cos(J)= \frac{k^{2} + l^{2}- j^{2}}{2(k)(l)} [/tex]
Using the values of k,j and l, we can write:
[tex]cos(J)= \frac{ 4^{2} + (2.89)^{2} - 3^{2} }{2(4)(2.89)} \\ \\ cos(J)= 0.664 \\ \\ J= cos^{-1}(0.664) \\ \\ J=48.39 [/tex]
Rounding to nearest integer, the measure of angle J will be 48 degrees.
So option B gives the correct answer
Answer: option B. 48°
Explanation:
1) Data:
side j: 3 in
side k: 4in
side l: 2.89 in
angle J: ?
2) Law of cosines
j² = k² + l² - 2kl cos(J)
⇒ 3² = 4² + (2.89)² - 2(4)(2.89)cos(J)
⇒ cos(J) = [16 + 8.3521 - 9] / (23.12)
⇒cos(J) = 0.66402
⇒ J = arc cosine (0.66402) ≈ 48.39°
Explanation:
1) Data:
side j: 3 in
side k: 4in
side l: 2.89 in
angle J: ?
2) Law of cosines
j² = k² + l² - 2kl cos(J)
⇒ 3² = 4² + (2.89)² - 2(4)(2.89)cos(J)
⇒ cos(J) = [16 + 8.3521 - 9] / (23.12)
⇒cos(J) = 0.66402
⇒ J = arc cosine (0.66402) ≈ 48.39°