Respuesta :
Answer:
[tex]4x\sqrt[3]{2y}[/tex] +[tex]12x^2y\sqrt[3]{2y^2}[/tex]
Step-by-step explanation:
Given expression [tex]3\sqrt[3]{16x^3y} + 4\sqrt[3]{54x^6y^5}[/tex].
Let us simplify each of the radical separately first.
[tex]3\sqrt[3]{16x^3y}=3\sqrt[3]{2\times 8 \times x^3\times y} =2\sqrt[3]{2} \times \sqrt[3]{8} \times \sqrt[3]{x^3} \times \sqrt[3]{y}[/tex]
[tex]=2\sqrt[3]{2} \times 2\times x\times \sqrt[3]{y}[/tex]
= [tex]2\times 2\times x\sqrt[3]{2y}[/tex]
[tex]= 4x\sqrt[3]{2y}[/tex]
[tex]4\sqrt[3]{54x^6y^5}=4\sqrt[3]{2\times 27 \times x^3\times x^3 \times y^3\times y^2} =4\sqrt[3]{2} \times \sqrt[3]{27} \times \sqrt[3]{x^3} \times \sqrt[3]{x^3} \times \sqrt[3]{y^3}\times\sqrt[3]{y^2}[/tex]
[tex]=4\sqrt[3]{2} \times 3 \times x\times x \times y \times \sqrt[3]{y^2}[/tex]
[tex]=12x^2y\sqrt[3]{2y^2}[/tex]
Therefore,
[tex]3\sqrt[3]{16x^3y} + 4\sqrt[3]{54x^6y^5}[/tex] =[tex]4x\sqrt[3]{2y}[/tex] +[tex]12x^2y\sqrt[3]{2y^2}[/tex]
Answer:
B: 4x([tex]\sqrt[3]{2}[/tex]y) + 12[tex]x^{2}[/tex]y ([tex]\sqrt[3]{2}[/tex][tex]y^{2}[/tex])
Step-by-step explanation:
took the test