Answer:
The correct option is 2.
Step-by-step explanation:
We have to find the value of P(0.6 ≤ z ≤ 2.12).
[tex]P(0.6\leq z\leq 2.12)=P(z\leq 2.12)-P(z< 0.6)[/tex]
From the Cumulative Standardized Normal Distribution table,
[tex]P(z\leq 2.12)=0.9830[/tex]
[tex]P(z<0.6)=0.7257[/tex]
[tex]P(0.6\leq z\leq 2.12)=0.9830-0.7257[/tex]
[tex]P(0.6\leq z\leq 2.12)=0.2573[/tex]
[tex]P(0.6\leq z\leq 2.12)\approx 0.26=26\%[/tex]
Therefore the correct option is 2.