Respuesta :

Find the first derivative and evaluate at f(x)f(x).ggand then found out what the answer is 

Answer:

[tex]g(x)=\frac{x}{4} -3[/tex]

Step-by-step explanation:

Ve have the function:

[tex]f(x)=y=4x+12[/tex]

The first step to find the inverse is to exchange the variables, that is where we see [tex]x[/tex] put [tex]y[/tex] and  where we see [tex]y[/tex] put [tex]x[/tex]:

[tex]x=4y+12[/tex]

And we clear for the variable [tex]y[/tex]:

[tex]x-12=4y\\\frac{x-12}{4} =y\\\frac{x}{4} -3=y[/tex]

This would be the inverse of the function (since we know that [tex]y=f(x)[/tex]), and according to the problem the inverse of [tex]f(x)[/tex] is [tex]g(x)[/tex], so:

[tex]g(x)=\frac{x}{4} -3[/tex]