Respuesta :
3/2 = 3 x 1/2
5/2 = 5 x 1/2
so f(x) = 3 x 1/2 x (5 x 1/2) ^ x-1
f(x) = 3 x 1 x (5 x 1/2)^x-1 [notice the 1/2 is together]
-----------------------
2
but x/2 = x/1 divided by 2/1 to divide these, invert and multiply: x/2 x 2/1
so f(x) = 3 x 1 x (5/2 )^x-1
----------------------
2
f(x) = 3 (5/2 ) ^ x-1 (x 1/2)
f(x) = 1.5 (5/2)^x-1
5/2 = 5 x 1/2
so f(x) = 3 x 1/2 x (5 x 1/2) ^ x-1
f(x) = 3 x 1 x (5 x 1/2)^x-1 [notice the 1/2 is together]
-----------------------
2
but x/2 = x/1 divided by 2/1 to divide these, invert and multiply: x/2 x 2/1
so f(x) = 3 x 1 x (5/2 )^x-1
----------------------
2
f(x) = 3 (5/2 ) ^ x-1 (x 1/2)
f(x) = 1.5 (5/2)^x-1
Answer:
The equivalent function is [tex]f(x)=\dfrac{3}{5}\cdot (\dfrac{5}{2})^{x}[/tex]
Step-by-step explanation:
Given: Pablo generates the function [tex]f(x)=\dfrac{3}{2}\cdot (\dfrac{5}{2})^{x-1}[/tex] to determine the xth number in a sequence.
To find : The equivalent representation?
Solution :
[tex]f(x)=\dfrac{3}{2}\cdot (\dfrac{5}{2})^{x-1}[/tex]
We will re-write the function,
We distribute the exponent x-1
[tex]f(x)=\dfrac{3}{2}\cdot (\dfrac{5}{2})^{x}\cdot (\dfrac{5}{2})^{-1}[/tex]
[tex]\because a^{m+n}=a^m\cdot a^n[/tex]
[tex]f(x)=\dfrac{3}{2}\cdot (\dfrac{5}{2})^{x}\cdot \dfrac{2}{5}[/tex]
[tex]\because (\dfrac{a}{b})^{-1}=\dfrac{b}{a}[/tex]
[tex]f(x)=\dfrac{3}{2}\cdot \dfrac{2}{5}\cdot (\dfrac{5}{2})^{x}[/tex]
[tex]f(x)=\dfrac{3}{5}\cdot (\dfrac{5}{2})^{x}[/tex]
Hence, The equivalent function is
[tex]f(x)=\dfrac{3}{5}\cdot (\dfrac{5}{2})^{x}[/tex]