We can do the same thing that we did last time to solve this one.
For A. (-1,-11):
[tex]y = - 4 {x}^{2} + 4x - 3 \\ ( - 11) = - 4 {( - 1)}^{2} + 4( - 1) - 3 \\ - 11 = - 4 - 4 - 3 \\ - 11 = - 11[/tex]
For A. (0,-3):
[tex]( - 3) = - 4 {(0)}^{2} + 4(0) - 3 \\ - 3 = - 3[/tex]
For A. (3,-27):
[tex]( - 27) = - 4 {(3)}^{2} + 4(3) - 3 \\ - 27 = - 36 + 12 - 3 \\ - 27 = - 27[/tex]
A. is the answer, but we need to double-check.
For B. (-1,-11):
[tex]y = 4 {x}^{2} - 4x - 3 \\ ( - 11) = 4 {( - 1)}^{2} - 4( - 1) - 3 \\ - 11 = 4 + 4 - 3 \\ - 11 = 5[/tex]
For C. (0,-3):
[tex]y = - 4 {x}^{2} - 4x + 3 \\ ( - 3) = - 4 {(0)}^{2} - 4(0) + 3 \\ - 3 = 3[/tex]
For D. (-1,-11):
[tex]y = - 4 {x}^{2} - 4x - 3 \\ ( - 11) = - 4 {( - 1)}^{2} - 4( - 1) - 3 \\ - 11 = - 4 + 4 - 3 \\ - 11 = - 3[/tex]
Since none of the other answers are correct, the answer is A.