Respuesta :

[tex]P(A\cap B)=P(A)+P(B)-P(A\cup B)[/tex]

[tex]\implies P(A\cap B)=\dfrac13+\dfrac25-\dfrac35=\dfrac2{15}[/tex]

Answer:

The value of P=(AnB) is [tex]\frac{2}{15}[/tex].

Step-by-step explanation:

It is given that

[tex]P(A)=\frac{1}{3}[/tex]

[tex]P(B)=\frac{2}{5}[/tex]

[tex]P(A\cap B)=\frac{3}{5}[/tex]

According to the union formula:

[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]

[tex]P(A\cup B)=\frac{1}{3}+\frac{2}{5}-\frac{3}{5}[/tex]

[tex]P(A\cup B)=\frac{1}{3}+\frac{2-3}{5}[/tex]

[tex]P(A\cup B)=\frac{1}{3}-\frac{1}{5}[/tex]

[tex]P(A\cup B)=\frac{5-3}{15}[/tex]

[tex]P(A\cup B)=\frac{2}{15}[/tex]

Therefore the value of P=(AnB) is [tex]\frac{2}{15}[/tex].