Respuesta :
[tex]P(A\cap B)=P(A)+P(B)-P(A\cup B)[/tex]
[tex]\implies P(A\cap B)=\dfrac13+\dfrac25-\dfrac35=\dfrac2{15}[/tex]
[tex]\implies P(A\cap B)=\dfrac13+\dfrac25-\dfrac35=\dfrac2{15}[/tex]
Answer:
The value of P=(AnB) is [tex]\frac{2}{15}[/tex].
Step-by-step explanation:
It is given that
[tex]P(A)=\frac{1}{3}[/tex]
[tex]P(B)=\frac{2}{5}[/tex]
[tex]P(A\cap B)=\frac{3}{5}[/tex]
According to the union formula:
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]
[tex]P(A\cup B)=\frac{1}{3}+\frac{2}{5}-\frac{3}{5}[/tex]
[tex]P(A\cup B)=\frac{1}{3}+\frac{2-3}{5}[/tex]
[tex]P(A\cup B)=\frac{1}{3}-\frac{1}{5}[/tex]
[tex]P(A\cup B)=\frac{5-3}{15}[/tex]
[tex]P(A\cup B)=\frac{2}{15}[/tex]
Therefore the value of P=(AnB) is [tex]\frac{2}{15}[/tex].