Place the steps required to determine the sum of the two expressions in the correct order.



Answer:
The required steps are shown below.
Step-by-step explanation:
The given expression is
[tex]\frac{3x+6}{x^2-x-6}+\frac{2x}{x^2+x-12}[/tex]
Step 1: Factories the numerators and denominators.
[tex]\frac{3(x+2)}{(x+2)(x-3)}+\frac{2x}{(x-3)(x+4)}[/tex]
Step 2: Cancel out common factors.
[tex]\frac{3}{(x-3)}+\frac{2x}{(x-3)(x+4)}[/tex]
Step 3: Making common denominator.
[tex]\frac{3(x+4)}{(x-3)(x+4)}+\frac{2x}{(x-3)(x+4)}[/tex]
Step 4: Taking LCM.
[tex]\frac{(3x+12)+2x}{(x-3)(x+4)}[/tex]
Step 5: Simplify the numerator and denominator.
[tex]\frac{5x+12}{(x-3)(x+4)}[/tex]
Therefore the arrangement of required steps are shown in the below attachment.