Respuesta :
18x² - 60x + 50
= 2 (9x² - 30x + 25 ) ⇒⇒⇒ take 2 as common from all terms
note: 9x² = 3x * 3x and 25 = 5*5 and 3x * 5 *2 = 30x
so, this is a complete square
= 2(3x-5)(3x-5)
= 2(3x-5)²
= 2 (9x² - 30x + 25 ) ⇒⇒⇒ take 2 as common from all terms
note: 9x² = 3x * 3x and 25 = 5*5 and 3x * 5 *2 = 30x
so, this is a complete square
= 2(3x-5)(3x-5)
= 2(3x-5)²
For this case we have the following polynomial:
[tex]18x ^ 2 -60x +50 [/tex]
We do common factor 2:
[tex]2 (9x ^ 2 -30x + 25) [/tex]
We now factor the expression into parentheses.
We have then:
[tex]2 (3x-5) (3x-5) [/tex]
Then, rewriting we have:
[tex]2 (3x-5) ^ 2[/tex]
Answer:
The factored expression is:
[tex]2 (3x-5) ^ 2[/tex]
[tex]18x ^ 2 -60x +50 [/tex]
We do common factor 2:
[tex]2 (9x ^ 2 -30x + 25) [/tex]
We now factor the expression into parentheses.
We have then:
[tex]2 (3x-5) (3x-5) [/tex]
Then, rewriting we have:
[tex]2 (3x-5) ^ 2[/tex]
Answer:
The factored expression is:
[tex]2 (3x-5) ^ 2[/tex]