Drag the tiles to the correct boxes to complete the pairs.
Match each radical equation with its solution.

Answer:
Step-by-step explanation:
First tile:
[tex]\sqrt{(x-1)^3}=8[/tex]
When we put x=5 we obtain:
[tex]\sqrt{(5-1)^3}=8\\\\\sqrt{4^3}=8\\\\\sqrt{64}=8\\\\\sqrt{8^2}=8\\\\8=8[/tex]
Hence, the first tile must be dragged to x=5
Second tile:
[tex]\sqrt[4]{(x-3)^5}=32\\\\(x-3)^5=(32)^4\\\\(x-3)^5=(2^5)^4[/tex]
Now when x=19
we have:
[tex](19-3)^5=(2^5)^4\\\\(16)^5=2^{20}\\\\(2^4)^5=2^{20}\\\\2^{20}=2^{20}[/tex]
( Since:
[tex](a^m)^n=a^{mn}[/tex] )
Third tile:
[tex]\sqrt{(x-4)^3}=125\\\\(x-4)^3=(125)^2\\\\Since\ on\ squaring\ both\ side\ of\ the\ equation\\\\(x-4)^3=(5^3)^2\\\\(x-4)^3=5^6[/tex]
when x=29 we have:
[tex](29-4)^3=5^6\\\\(25)^3=5^6\\\\(5^2)^3=5^6\\\\5^6=5^6[/tex]
Fourth tile:
[tex]\sqrt[3]{(x+2)^4}=16\\\\On\ cubing\ both\ side\ of\ the\ equation\ we\ get:\\\\(x+2)^4=(16)^3\\\\(x+2)^4=(2^4)^3\\\\(x+2)^4=2^{12}[/tex]
when x=6 we have:
[tex]8^4=2^{12}\\\\(2^3)^4=2^{12}\\\\2^{12}=2^{12}[/tex]
The matching of each radical eqaution with its solutions is as follows.
[tex]\large {\boxed {x = 19} }[/tex] → [tex]\sqrt[4]{(x-3)^5} = 32[/tex]
[tex]\large {\boxed {x = 6} }[/tex] → [tex]\sqrt[3]{(x+2)^4} = 16[/tex]
[tex]\large {\boxed {x = 29} }[/tex] → [tex]\sqrt{(x-4)^3} = 125[/tex]
[tex]\large {\boxed {x = 5} }[/tex] → [tex]\sqrt{(x-1)^3} = 8[/tex]
Let's recall following formula about Exponents and Surds:
[tex]\boxed { \sqrt { x } = x ^ { \frac{1}{2} } }[/tex]
[tex]\boxed { (a ^ b) ^ c = a ^ { b . c } } [/tex]
[tex]\boxed {a ^ b \div a ^ c = a ^ { b - c } }[/tex]
[tex]\boxed {\log a + \log b = \log (a \times b) }[/tex]
[tex]\boxed {\log a - \log b = \log (a \div b) }[/tex]
Let us tackle the problem.
[tex]\sqrt{(x-1)^3} = 8[/tex]
[tex](x-1)^3 = 8^2[/tex]
[tex](x-1)^3 = (2^3)^2[/tex]
[tex](x-1)^3 = 2^6[/tex]
[tex]\sqrt[3]{(x-1)^3} = \sqrt[3]{2^6}[/tex]
[tex](x - 1 ) = 2^{6/3}[/tex]
[tex]x - 1 = 2^2[/tex]
[tex]x - 1 = 4[/tex]
[tex]x = 4 + 1[/tex]
[tex]\large {\boxed {x = 5} }[/tex]
[tex]\sqrt[4]{(x-3)^5} = 32[/tex]
[tex]\sqrt[4]{(x-3)^5} = 2^5[/tex]
[tex](x-3)^5 = (2^5)^4[/tex]
[tex](x-3) = \sqrt[5]{2^{20}}[/tex]
[tex](x-3) = 2^4[/tex]
[tex](x-3) = 16[/tex]
[tex]\large {\boxed {x = 19} }[/tex]
[tex]\sqrt{(x-4)^3} = 125[/tex]
[tex]\sqrt{(x-4)^3} = 5^3[/tex]
[tex](x-4)^3 = (5^3)^2[/tex]
[tex](x-4)^3 = 5^6[/tex]
[tex]\sqrt[3]{(x-4)^3} = \sqrt[3]{5^6}[/tex]
[tex](x - 4 ) = 5^{6/3}[/tex]
[tex]x - 4 = 5^2[/tex]
[tex]x - 4 = 25[/tex]
[tex]x = 25 + 4[/tex]
[tex]\large {\boxed {x = 29} }[/tex]
[tex]\sqrt[3]{(x+2)^4} = 16[/tex]
[tex]\sqrt[3]{(x+2)^4} = 2^4[/tex]
[tex](x+2)^4 = (2^4)^3[/tex]
[tex](x+2) = \sqrt[4]{2^{12}}[/tex]
[tex](x+2) = 2^3[/tex]
[tex](x+2) = 8[/tex]
[tex]\large {\boxed {x = 6} }[/tex]
Grade: High School
Subject: Mathematics
Chapter: Exponents and Surds
Keywords: Power , Multiplication , Division , Exponent , Surd , Negative , Postive , Value , Equivalent