Q1) Find the limit of the function by using direct substitution.:
limit as x approaches quantity pi divided by two of quantity three times e to the x times cosine of x.

Q2)Find the limit of the function by using direct substitution:
limit as x approaches zero of quantity x squared minus one.

Q3)Find the limit of the function algebraically:
limit as x approaches zero of quantity x squared plus three divided by x to the fourth power.

PLEASEEEE answer ASAP thank u SO much! this is super important!

Respuesta :

Q1)
For the first question, the function is 
                                  f(x)=3eˣ * cos(x)
Now, 
         [tex] \lim_{x \to \\\frac{ \pi }{2} } 3e^x cos(x)[/tex]
By direct substitution of π/2,
we get,
         = [tex] 3e^ \frac{ \pi }{2} cos( \frac{ \pi }{2} )[/tex]   , as cos(π/2)=0
         = 0 

Q2)
For the second question, the function is 
                         f(x)= x²-1
Now,
            [tex] \lim_{x\to \ 0} x^{2} -1 [/tex]
By direct substitution,
         the square term will be zero and the answer is -1
            = 0 -1
            =-1
Q3)
For the third question, the function is
                                     f(x)=x²+3/x⁴
Now,
                       
                = [tex] \lim_{x\to \ 0} x^{2} +\frac{3}{ x^4 } [/tex]  
Now, by using the property of limit separate the limit with both x² and 3/x⁴
the x² term will be zero and the second term will approach infinity.
                = [tex]\lim_{x\to \ 0} x^{2} +\lim_{x\to \ 0} \frac{3}{ x^4 }[/tex]
                = infinity   is the correct answer.