Respuesta :
Answer: If the point of the circle P has coordinates: P=(x,y)
sine (Angle) = y/r
cosine (Angle) = x/r
tangent (Angle) = y/xw
where r=sqrt(x^2+y^2) is the radius of the circle
Example:
P=(3,4)=(x,y); x=3 and y=4
Radius of the circle: r
r=sqrt(x^2+y^2)
r=sqrt(3^2+4^2)
r=sqrt(9+16)
r=sqrt(25)
r=5
sin(Angle)=y/r
sin(Angle)=4/5
cosine(Angle)=x/r
cosine(Angle)=3/5
tangent(Angle)=y/x
tangle(Angle)=4/3
sine (Angle) = y/r
cosine (Angle) = x/r
tangent (Angle) = y/xw
where r=sqrt(x^2+y^2) is the radius of the circle
Example:
P=(3,4)=(x,y); x=3 and y=4
Radius of the circle: r
r=sqrt(x^2+y^2)
r=sqrt(3^2+4^2)
r=sqrt(9+16)
r=sqrt(25)
r=5
sin(Angle)=y/r
sin(Angle)=4/5
cosine(Angle)=x/r
cosine(Angle)=3/5
tangent(Angle)=y/x
tangle(Angle)=4/3
Answer with explanation:
Suppose a point (a,b) lies on the circle.
To find Sine, Cosine and Tangent values we need to construct a right angled triangle.
So, to Construct a right triangle inside a Circle
Draw a diameter of the circle.Join the end points of diameter to the point lying on the circle.
Angle in a Semicircle is right triangle.
So, Right triangle is constructed.The two sides can be calculated , if end points of diameter is Known and also the hypotenuse which is Diameter of the circle.
Then we can be Evaluate Sine, Cosine and Tangent values.
