Respuesta :

[tex]\bf \cfrac{3}{2x+5}+\cfrac{5}{x-5}\impliedby \stackrel{LCD}{(2x+5)(x-5)}\implies \cfrac{3(x-5)~~+~~5(2x+5)}{(2x+5)(x-5)} \\\\\\ \cfrac{3x-15~~+~~10x+25}{(2x+5)(x-5)}\implies \cfrac{13x+10}{(2x+5)(x-5)}[/tex]

Answer:  The required simplified form of the given expression is [tex]\dfrac{13x+10}{(x-5)(2x+5)}.[/tex]

Step-by-step explanation:  We are given to simplify the following expression :

[tex]E=\dfrac{3}{2x+5}+\dfrac{5}{x-5}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

To simplify the given expression, we need to take the lcm of the denominators first.

The simplification of expression (i) is as follows :

[tex]E\\\\\\=\dfrac{3}{2x+5}+\dfrac{5}{x-5}\\\\\\=\dfrac{3(x-5)+5(2x+5)}{(2x+5)(x-5)}\\\\\\=\dfrac{3x-15+10x+25}{(x-5)(2x+5)}\\\\\\=\dfrac{13x+10}{(x-5)(2x+5)}\\[/tex]

Thus, the required simplified form of the given expression is [tex]\dfrac{13x+10}{(x-5)(2x+5)}.[/tex]