Respuesta :

Your answers would be : X=-1 y=7
13x + 2y = 1
5x - 2y = -19

Use the substitution method to solve this system of equations. In the first equation, solve for y.
13x + 2y = 1 
Subtract 13x from both sides.

2y = 1 - 13x
Divide both sides by 2.

y = [tex] \frac{1}{2} [/tex] - [tex] \frac{13}{2} [/tex]x

Now plug y into the second equation.
5x - 2([tex] \frac{1}{2} [/tex] - [tex] \frac{13}{2} [/tex]x) = -19
Distribute -2 to [tex] \frac{1}{2} [/tex] - [tex] \frac{13}{2} [/tex]x.

5x - 1 + 13x = -19
Combine like terms.

18x - 1 = -19
Add 1 to both sides.

18x = -18
Divide both sides by 18.

x = -1

Now plug x back into the "new" first equation (where we solved for y).
y = [tex] \frac{1}{2} [/tex] - [tex] \frac{13}{2} [/tex](-1)
Multiply [tex] \frac{13}{2} [/tex] by -1.

y = [tex] \frac{1}{2} [/tex] + 6[tex] \frac{1}{2} [/tex] = 7

y = 7

x = -1, y = 7