Joel is laying pipe for a sprinkler system before he plants his lawn. The lawn is a rectangular, 15 feet long and 8 foot wide. He needs to lay a piece of pipe that will run along the diagonal of the lawn. It will divide the area of lawn into two right trinagles. What will be the length of the pipe?

Respuesta :

Riia

He needs to lay a piece of pipe that will run along the diagonal of the lawn . It means that we have to use pythagorean identity that is

[tex] a^2 +b^2 =c^2 [/tex]

Where a and b are the two legs or the two sides and c is the hypotenuse or the diagonal .

Here a= 15, b =8 and we need to find the value of c . Therefore we substitute the values of a and b and solve for c

[tex] 15^2 + 8^2 = c^2 [/tex]

[tex] 225 + 64 = c^2 [/tex]

[tex] 289 = c^2 [/tex]

Now we need to get rid of the square and for that, we take square root to both sides .

[tex] \sqrt{289} =c [/tex]

c=17

So the length of the pipe is 17 feet .