Respuesta :

DeanR

By our very goofy system the circle constant [tex] \pi [/tex] denotes half a circle, [tex]180^\circ[/tex]. So the conversion factor from radians to degrees is


[tex]\dfrac{ 180^\circ}{\pi}[/tex]


[tex]\dfrac{\pi}{3} \times \dfrac{ 180^\circ}{\pi} = 60 ^\circ[/tex]


Calling the rightmost dot [1] and counting counterclockwise, that's dot [4].


[tex] \dfrac{2\pi}{3} \times \dfrac{ 180^\circ}{\pi} = \dfrac{2}{3} \times 180^\circ = 120^\circ [/tex]


That's dot [6]


[tex]\dfrac{4\pi}{3} \times \dfrac{ 180^\circ}{\pi} = \dfrac{4}{3} \times 180^\circ = 240^\circ [/tex]


That's dot [12]


[tex]\dfrac{5\pi}{3} \times \dfrac{ 180^\circ}{\pi} = \dfrac{5}{3} \times 180^\circ = 300^\circ [/tex]


That's dot [14]





Answer:

For Plato Users

Step-by-step explanation:


Ver imagen monicamcastillo