(x - 5) 2 = 81


Which of the following expressions represents the solutions to the given equation?


-5 ± √(81)

5 ± √(81)

-25 ± √(81)

Respuesta :

gmany

[tex](x-5)^2=81\to x-5=\pm\sqrt{81}\ \ \ |+5\\\\x=5\pm\sqrt{81}[/tex]

Answer: 5 ± √(81)

Answer:

Option 2nd is correct

[tex]5 \pm \sqrt{81}[/tex]

Step-by-step explanation:

Given the equation:

[tex](x-5)^2 = 81[/tex]

Taking square root both sides we have;

[tex]\sqrt{(x-5)^2}= \pm \sqrt{2}[/tex]

Using the exponent rule:

[tex]\sqrt[n]{x^n}=x[/tex]

then;

[tex]x-5 = \pm \sqrt{81}[/tex]

Add 5 to both sides we have;

[tex]x-5+5= 5 \pm \sqrt{81}[/tex]

Simplify:

[tex]x = 5 \pm \sqrt{81}[/tex]

Therefore, the following expressions represents the solutions to the given equation is, [tex]5 \pm \sqrt{81}[/tex]