Respuesta :

General Idea:

In order to find the local extrema of a function f(x), we need to do the below steps:

(i) Find the first derivative of the given function

(ii) Set the first derivative to zero and solve for x to identify the critical numbers.

(iii) Draw a number line plotting the critical numbers in it, then pick a test point from each of the intervals to check whether the function is increasing or decreasing.

(iv) If [tex] f ' (x) < 0 [/tex], then function f(x) Decreasing in that interval. If [tex] f ' (x) > 0 [/tex], then the function f(x) Increasing in that interval. Based on this information we can identify the local extrema's.

Applying the concept:

Given function [tex] f(x)=-x^3+9x-1 [/tex]

Step 1: Finding the derivative of the function:

[tex] f'(x)=-3x^2+9 [/tex]

Step 2: Set the[tex] f '(x) = 0 [/tex] and solve for x to get the critical numbers.

[tex] 0=-3x^2+9\\ \\-3x^2+9=0\\ -3x^2+9-9=0-9\\ -3x^2=-9\\ \\\frac{-3x^2}{-3} =\frac{-9}{-3}\\ \\ x^2=3\\ \sqrt{x^{2}} =\sqrt{3}\\ \\x=1.7(or)x=-1.7 [/tex]

Step 3: We need write the intervals based on the critical numbers

[tex] (-\infty, -1.7), (-1.7, 1.7),(1.7,\infty) [/tex]

Let us pick a Test point from the interval [tex] (-\infty, -1.7) [/tex] as -2

[tex] f ' (-2)=-3(-2)^2+9=-3(4)+9=-12+9=-3 [/tex]

The function will be decreasing in the interval[tex] (-\infty, -1.7) [/tex]

Let us pick a Test point from the interval [tex] (-1.7, 1.7) [/tex] as 0

[tex] f '(0)=-3(0)^2+9=0+9=9 [/tex]

The function will be increasing in the interval[tex] (-1.7, 1.7) [/tex]

Let us pick a Test point from the interval [tex] (1.7,\infty) [/tex] as 2

[tex] f'(2)=-3(2)^2+9=-3(4)+9=-12+9=-3 [/tex]

The function will be decreasing in the interval[tex] (1.7,\infty) [/tex].

Conclusion:

At [tex] x=-1.7 [/tex], function has a local minimum

[tex] f(-1.7)=-(-1.7)^3+9(-1.7)-1=-11.4 [/tex]

At [tex] x=1.7 [/tex], function has a local maximum

[tex] f(1.7)=-(1.7)^3+9(1.7)-1=9.4 [/tex]

Ver imagen berno