Respuesta :

To be a right triangle, the hypotenuse^2 must equal side1^2 + side2^2

Only set 2 meets these conditions

8, sq root (29), sq root (35) then squaring these:

64, 29, 35

64 = 29 + 35

Answer:

Option B is the answer.

Step-by-step explanation:

We know in a right angle triangle when we apply Pythagoras Theorem, then

(Hypotenuse)² = ( side 1)² + (side 2)²

(A) set (1) ⇒ 6 cm, 7 cm, √12 cm

7² = 6² + (√12)²

49 = 36 + 12 = 48

49 ≠ 48     Therefore, its not the sides of a right triangle.

(B) Set (2) ⇒ 8 in, √29 in, √35 in

                    8² = (√29)² + (√35)²

                  64 = 29 + 35

                   64 = 64    So its a right angle triangle

(C) Set (3) ⇒ √3 mm, 4 mm √5 mm

         4² = (√3)² + (√5)²

         16 = 3 + 5

         16 ≠ 8    Therefore, its not a right angle triangle.

(D) Set (4) ⇒ 9 ft, √26 ft, 6 ft.

                      9² = (√26)² + 6²

                      81 = 26 + 36

                      81 ≠ 62   Therefore, its not a right angle triangle.