If an=24, which recursive formula could represent the sequence below? ...,24,88, 664, 8408A) An=(An-2)^2 + An-1 ; A1=2B) An= 3An-1 + 16; A1=16C) An= (n)An-1 - 8; A1=4D An=2An-2 + 7An-1; A1=2

Respuesta :

When we substitute [tex] n = 4 [/tex], we get...

[tex] a_{n-3}=a_1\\ \\ a_{n-2}=a_2\\ \\ a_{n-1}=a_3\\ \\ a_n=a_4 [/tex]

Comparing the given sequence: 24, 88, 664, 8408, we get

[tex] a_{n-3}=a_1=24\\ \\ a_{n-2}=a_2=88\\ \\ a_{n-1}=a_3=664\\ \\ a_n=a_4=8408 [/tex]

We need to substitute the above values in each option and check which is TRUE.

----

Option A

[tex] a_n=(a_{n-2})^2+a_{n-1}, a_1=2\\ \\ a_n=(88)^2+664=7744+664\\\\a_n=8408 (TRUE) [/tex]

Option B

[tex] a_n=3a_{n-1}+16\\ \\ a_n=3(664)+16\\\\a_n=2008 (FALSE) [/tex]

Option C

[tex] a_n=(n)a_{n-1}-8\\ \\
a_4=(4)a_3-8=4(664)-8\\\\a_4=2648 (FALSE) [/tex]

Option D

[tex] a_n=2a_{n-2}+7a_{n-1}\\ \\ a_n=2(88)+7(664)\\ \\ a_n=4824(FALSE) [/tex]

Conclusion:

Option A is the correct answer.

Ver imagen berno

Answer:

its a on edge

Step-by-step explanation: