Respuesta :
[tex]\sf Hello![/tex]
• [tex]\sf Radius = 3.3 \:m[/tex]
[tex]\sf Then,[/tex]
[tex]\sf Volume \: of\:Hemisphere [/tex] :
= [tex]\dfrac{\sf 2}{\sf 3}[/tex]π[tex]\sf r^{2}[/tex]
= [tex]\dfrac{\sf 2}{\sf 3} × \sf 3.14 × \sf (3.3)^{2}[/tex]
= [tex]\dfrac{\sf 2}{\sf 3} × \sf 3.14 × \sf 10.89[/tex]
= [tex]\dfrac{\sf 2}{\sf 3} × \sf 34.1946[/tex]
= [tex]\sf 22.\:79759998\: m^{3}[/tex]
= [tex]\sf 22.8 \:m^{3}\: (approx.)[/tex]
~ [tex]\sf iCarl [/tex]
• [tex]\sf Radius = 3.3 \:m[/tex]
[tex]\sf Then,[/tex]
[tex]\sf Volume \: of\:Hemisphere [/tex] :
= [tex]\dfrac{\sf 2}{\sf 3}[/tex]π[tex]\sf r^{2}[/tex]
= [tex]\dfrac{\sf 2}{\sf 3} × \sf 3.14 × \sf (3.3)^{2}[/tex]
= [tex]\dfrac{\sf 2}{\sf 3} × \sf 3.14 × \sf 10.89[/tex]
= [tex]\dfrac{\sf 2}{\sf 3} × \sf 34.1946[/tex]
= [tex]\sf 22.\:79759998\: m^{3}[/tex]
= [tex]\sf 22.8 \:m^{3}\: (approx.)[/tex]
~ [tex]\sf iCarl [/tex]
Answer:
39865.1 m
Step-by-step explanation:
\text{Volume of a Sphere:}
Volume of a Sphere:
V=\frac{4}{3}\pi r^3
V=
3
4
πr
3
\text{radius} = 26.7
radius=26.7
meters
\text{Plug in:}
Plug in:
\frac{4}{3}\pi (26.7)^3
3
4
π(26.7)
3
79730.1155307
79730.1155307
Use calculator
\text{Volume of Hemisphere HALF of Volume of Sphere:}
Volume of Hemisphere HALF of Volume of Sphere:
\frac{79730.1155307}{2}
2
79730.1155307
Divide volume by 2
39865.0577654
39865.0577654