Respuesta :

iCarl
[tex]\sf Hello![/tex]

• [tex]\sf Radius = 3.3 \:m[/tex]

[tex]\sf Then,[/tex]

[tex]\sf Volume \: of\:Hemisphere [/tex] :

= [tex]\dfrac{\sf 2}{\sf 3}[/tex]π[tex]\sf r^{2}[/tex]

= [tex]\dfrac{\sf 2}{\sf 3} × \sf 3.14 × \sf (3.3)^{2}[/tex]

= [tex]\dfrac{\sf 2}{\sf 3} × \sf 3.14 × \sf 10.89[/tex]

= [tex]\dfrac{\sf 2}{\sf 3} × \sf 34.1946[/tex]

= [tex]\sf 22.\:79759998\: m^{3}[/tex]

= [tex]\sf 22.8 \:m^{3}\: (approx.)[/tex]

~ [tex]\sf iCarl [/tex]

Answer:

39865.1 m  

Step-by-step explanation:

\text{Volume of a Sphere:}

Volume of a Sphere:

V=\frac{4}{3}\pi r^3

V=  

3

4

​  

πr  

3

 

\text{radius} = 26.7

radius=26.7

meters

\text{Plug in:}

Plug in:

\frac{4}{3}\pi (26.7)^3

3

4

​  

π(26.7)  

3

 

79730.1155307

79730.1155307

Use calculator

\text{Volume of Hemisphere HALF of Volume of Sphere:}

Volume of Hemisphere HALF of Volume of Sphere:

\frac{79730.1155307}{2}

2

79730.1155307

​  

 

Divide volume by 2

39865.0577654

39865.0577654