Respuesta :

f(x) = 3^x + 10

g(x) = 2x - 4


(f-g)(x) = f(x) - g(x)

(f-g)(x) = 3^x+10 - (2x - 4)

(f-g)(x) = 3^x - 2x + 14

The value of (f-g)(x) is [tex]3^{x} - 2x + 14[/tex] .

How to find the value of the given composite function ?

Given that f(x) = [tex]3^{x} + 10[/tex] and g(x) = [tex]2x - 4[/tex]

We know that (f-g)(x) = f(x) - g(x)

⇒ (f-g)(x) =  [tex]3^{x} + 10[/tex] - ([tex]2x - 4[/tex])

⇒ (f-g)(x) =  [tex]3^{x} + 10[/tex] - [tex]2x + 4[/tex]  

∴  (f-g)(x) =  [tex]3^{x} - 2x + 14[/tex]

Thus the value of (f-g)(x) is [tex]3^{x} - 2x + 14[/tex] .

To learn more about composite functions, refer -

brainly.com/question/17256873

#SPJ2