Respuesta :

gmany

[tex] \dfrac{9x}{4}=-9\ \ \ |\text{Multiplication Property of Equality}\\\\4\cdot\dfrac{9x}{4}=4\cdot(-9)\\\\9x=-36\ \ \ \ |\text{Division Property of Equality}\\\\\dfrac{9x}{9}=\dfrac{-36}{9}\\\\x=-4 [/tex]

Answer:

The justification is mentioned below.

Step-by-step explanation:

Given equation,

[tex]\frac{9x}{4}=-9[/tex]

Multiply both sides by 4 ( multiplicative property of equality ),

[tex]\frac{9x}{4}\times 4 = -9\times 4[/tex]

[tex]9x=-36[/tex]

Divide both sides by 9 ( division property of equality )

[tex]\frac{9x}{9}=\frac{-36}{9}[/tex]

[tex]x=-4[/tex]