The cylinders are similar. The volume of the larger cylinder is 2264 cubic centimeters. What is the volume of the smaller cylinder?

The cylinders are similar The volume of the larger cylinder is 2264 cubic centimeters What is the volume of the smaller cylinder class=

Respuesta :

[tex] \bf ~\hspace{5em} \textit{ratio relations of two similar shapes}
\\[2em]
\begin{array}{ccccllll}
&\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\
\cline{2-4}&\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array}\\\\[-0.35em]
~\dotfill [/tex]


[tex] \bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\[-0.35em]
\rule{34em}{0.25pt}\\\\
\cfrac{s}{s}=\cfrac{4}{8}\implies \cfrac{s}{s}=\cfrac{1}{2}~\hspace{7em}\cfrac{1}{2}=\cfrac{\sqrt[3]{x}}{\sqrt[3]{2264}}\implies \cfrac{1}{2}=\sqrt[3]{\cfrac{x}{2264}}
\\\\\\
\left( \cfrac{1}{2} \right)^3=\cfrac{x}{2264}\implies \cfrac{1}{8}=\cfrac{x}{2264}\implies \cfrac{2264}{8}=x\implies 283=x [/tex]