Respuesta :
[tex] \bf 1.~(0,0)~\hspace{5em}0=\left( \cfrac{1}{2} \right)^0\implies 0\ne 1\qquad \otimes
\\\\\\
2.~\left( 0,\frac{1}{2} \right)~\hspace{5em}\cfrac{1}{2}=\left( \cfrac{1}{2} \right)^0\implies \cfrac{1}{2}\ne 1\qquad \otimes [/tex]
[tex] \bf 4.~(2,1)~\hspace{5em}1=\left( \cfrac{1}{2} \right)^2\implies 1=\cfrac{1^2}{2^2}\implies 1\ne \cfrac{1}{4}\qquad \otimes
\\\\\\
3.~\left(2,\frac{1}{4} \right)~\hspace{5em}\cfrac{1}{4}=\left( \cfrac{1}{2} \right)^2\implies \cfrac{1}{4}=\cfrac{1^2}{2^2}\implies \cfrac{1}{4}=\cfrac{1}{4}\qquad \checkmark [/tex]
The point on a function are the true values of the function.
[tex]\mathbf{ (2,1/4)}[/tex] is a point on the graph of [tex]\mathbf{y = (\frac{1}{2})^x}[/tex]
The function is given as:
[tex]\mathbf{y = (\frac{1}{2})^x}[/tex]
[tex]\mathbf{1.\ (0,0)}[/tex]
This means that:
x = 0, and y = 0
So, we have:
[tex]\mathbf{0 = (\frac{1}{2})^0}[/tex]
[tex]\mathbf{0 = 1}[/tex]
The above is not true, because:
[tex]\mathbf{0 \ne 1}[/tex]
[tex]\mathbf{2.\ (0,1/2)}[/tex]
This means that:
x = 0, and y = 1/2
So, we have:
[tex]\mathbf{1/2 = (\frac{1}{2})^0}[/tex]
[tex]\mathbf{1/2 = 1}[/tex]
The above is not true, because:
[tex]\mathbf{1/2 \ne 1}[/tex]
[tex]\mathbf{3.\ (2,1/4)}[/tex]
This means that:
x =2, and y = 1/4
So, we have:
[tex]\mathbf{\frac 14 = (\frac{1}{2})^2}[/tex]
[tex]\mathbf{\frac 14 = \frac{1}{4}}[/tex]
The above is true.
Hence,
[tex]\mathbf{ (2,1/4)}[/tex] is a point on the graph of [tex]\mathbf{y = (\frac{1}{2})^x}[/tex]
Read more about points and graphs at:
https://brainly.com/question/20776528