A company manufactures two products, a and
b. product a can be sold for $145 per unit and b for $75 per unit. management requires that at least 1850 units be manufactured each month. product a requires 5 hours of labor per unit, and product b requires 3 hours. the cost of labor is $15 per hour and a total of 8000 hours are available per month. using the excel's solver, determine a production schedule of how many of each product to manufacture each month to maximize the company's profit. how many of each product should they manufacture each month? what will be the monthly profit?

Respuesta :

In order to solve the above question we will need to frame 2 equations as below:

Constraint of Hours per month

5a+3b=8000

Where product a required 5 hours and product b requires 3 hours the above equation can be formed wherein the total hours used will be 8000 hours

Contraint of products to be produced per month, since the company requires to produce 1850 products at a miimum the below equation can be formed:

a+b=1850

Solving both the equations as above

5a+3b=8000

a+b=1850

We get a= 625 units and b=1225 units thus if the company uses the below production schedule it will make a profit as below:

                                                                    A                                            B

Sales Price per unit                               145                                            75

Cost of labour@ 15 per hour                   75                                           45

Contribution per unit                             70                                             30

No of units produced                        1225                                             625

Total profit                                         85750                                        18750

                                                                                                         104500

a+b=1850

Answer:

a+b=1850

Explanation:

i got this question right