Respuesta :
Answer:- The wavelength is [tex]1.36*10^1^2m[/tex] and the right option is D.
Solution:- Wavelength is inversely proportional to the frequency and the equation is:
[tex]\lambda =\frac{c}{\nu }[/tex]
where, [tex]\lambda [/tex] is the wavelength, c is the speed of light and [tex]\nu[/tex] is frequency.
Frequency is [tex]2.20*10^-^4Hz[/tex] and the speed of light is [tex]3.00*10^8\frac{m}{s}[/tex] .
Since, [tex]1Hz=1s^-^1[/tex]
So, [tex]2.20*10^-^4Hz=2.20*10^-^4s^-^1[/tex]
Let's plug in the values in the equation:
[tex]\lambda =\frac{3.00*10^8m.s^-^1}{2.20*10^-^4s^-^1}[/tex]
[tex]\lambda =1.36*10^1^2m[/tex]
Hence, the right option is D) [tex]1.36*10^1^2m[/tex] .
The wavelength of these waves is: A. [tex]7.30[/tex] × [tex]10^-13 \;meters[/tex].
Given the following data:
- Frequency of wave = [tex]2.20[/tex] × [tex]10^-4 \;Hz[/tex]
We know that the speed of a wave is [tex]3.0[/tex] × [tex]10^8 \; meters.[/tex]
To find the wavelength of these waves;
Mathematically, the wavelength of a waveform is given by the formula;
[tex]Wavelength = \frac{Speed}{Frequency}[/tex]
Substituting the values into the formula, we have;
[tex]Wavelength = \frac{0.00022}{300000000}[/tex]
Wavelength = [tex]7.30[/tex] × [tex]10^-13 \;meters[/tex]
Therefore, the wavelength of these waves is [tex]7.30[/tex] × [tex]10^-13 \;meters[/tex].
Read more: https://brainly.com/question/14708169