Which trigonometric ratio will not have the same value as sin A?

[tex] \sin\theta=\dfrac{opposite}{hypotenuse}\\\\\cos\theta=\dfrac{adjacent}{hypotenuse}\\\\\tan\theta=\dfrac{opposite}{adjacent} [/tex]
It's an isosceles triangle, therefore AB = BC.
Let AB = BC = x abd AC = y. Then:
[tex]opposite=adjacent=x\\hypotenuse=y\\\\\sin A=\dfrac{x}{y}\\\\\cos A=\dfrac{x}{y}\\\\\sin C=\dfrac{x}{y}\\\\\cos C=\dfrac{x}{y}\\\\\tan C=\dfrac{x}{x}=1[/tex]
Answer: C. tan C
Answer:
correct option is d) cos C
Step-by-step explanation:
Since,
[tex]SinФ = \frac{perpendicular}{hypotenuses}[/tex]
[tex]CosФ = \frac{base}{hypotenuses}[/tex]
[tex]TanФ = \frac{perpendicular}{base}[/tex]
In triangle ABC , sides are denoted as mention in figure-1
[tex]sin A =\frac{x}{z}[/tex]
[tex]cos A =\frac{y}{z}[/tex]
[tex]sin C =\frac{y}{x}[/tex]
[tex]tan C =\frac{y}{x}[/tex]
[tex]cos C =\frac{x}{z}[/tex]
hence, cos C have similar value as sin A
Therefore, correct option is d) cos C