By graphing the system of constraints find the values of x and y that maximize the objective function, find the maximum value.

x+y<=11
2y>=x
x>=0
y>=0

Maximum for P=2x+y

A. P=10 1/3
B. P=7 1/3
C. P=21
D. P=29 1/3

Respuesta :

First, find the vertices of the shaded region.

x≥0, y≥0 represents the first quadrant.

x + y ≤ 11 has intercepts at (11,0) and (0, 11)

2y ≥ x has intercepts at (0, 0)

x + y ≤ 11 and 2y ≥ x intercept at [tex](\frac{22}{3}, \frac{22}{6} )[/tex]

The vertices within the shaded region are (0, 11), (0, 0), and [tex](\frac{22}{3}, \frac{22}{6} )[/tex].

Next, evaluate the function P = 2x + y at those intercepts.

P = 2x + y at (0, 11)   ⇒  P = 2(0) + (11)   ⇒   P = 0 + 11   ⇒   P = 11

P = 2x + y at (0, 0)   ⇒  P = 2(0) + (0)   ⇒   P = 0 + 0   ⇒   P = 0

P = 2x + y at [tex](\frac{22}{3}, \frac{22}{6} )[/tex]   ⇒  P = 2[tex](\frac{22}{3})[/tex] + [tex](\frac{22}{6} )[/tex]  ⇒   P = [tex]\frac{44}{3}[/tex] + [tex]\frac{22}{6} [/tex]  ⇒   P = [tex]\frac{110}{6}[/tex]   ⇒   P = [tex]\frac{55}{3} [/tex]   = 19[tex]\frac{1}{3}[/tex]

The maximum is found at [tex](\frac{22}{3}, \frac{22}{6} )[/tex]

Answer: maximum is 19[tex]\frac{1}{3}[/tex]