PLEASE HELP HURRY!!!!!!!
15 POINTS FOR CORRECT ANSWER!!!!!

Given that x = 4 + 5i and y = 2 - 9i, match the equivalent expressions.

PLEASE HELP HURRY 15 POINTS FOR CORRECT ANSWER Given that x 4 5i and y 2 9i match the equivalent expressions class=

Respuesta :

As it has been given that [tex]x=4+5i[/tex], [tex]y=2-9i[/tex].

We need to find the value of the following:

(i) [tex]4x-y[/tex], substituting the value of 'x' and 'y' in the expression, we get:

[tex]4(4+5i)-(2-9i)=4\times 4+4\times 5i-2+9i=16+20i-2+9i[/tex]

[tex]=14+29i[/tex]

So, [tex]4x-y=14+29i[/tex]

(ii) [tex]-x+3y[/tex], substituting the value of 'x' and 'y' in the expression, we get:

[tex]-(4+5i)+3(2-9i)=-4-5i+3\times 2-3 \times 9i=-4-5i+6-27i[/tex]

[tex]=2-32i[/tex]

So, [tex]-x+3y=2-32i[/tex]

(iii) [tex]x \times y[/tex], we need to substitute the value of 'x' and 'y' in the expression,  for this, we can use distributive property of multiplication that says,

[tex]a(b+c)=a \times b+ a \times c[/tex]

Using the distributive property of multiplication:

[tex](4+5i)\times(2-9i)=4 \times 2-4 \times 9i+5i \times 2-5i \times 9i[/tex]

[tex]=8-36i+10i-45i^2[/tex]

Now, we know that [tex]i \times i=i^2=-1[/tex]

We get, [tex]8-36i+10i-45 \times (-1)=8-26i+45[/tex]

[tex]=8+45-26i=53-26i[/tex]

Therefore, [tex]x \times y[/tex]=[tex]53-26i[/tex].

(iv) We have, [tex]2x \times y[/tex], we need to substitute the value of 'x' and 'y' in the expression, we get:

[tex]2(4+5i)\times (2-9i)[/tex]

Again, we can use distributive property of multiplication that says,

[tex]a(b+c)=a \times b+ a \times c[/tex]

So,

[tex]2(4+5i) \times (2-9i)=2\times 4+2 \times 5i\times(2-9i)[/tex]

[tex]=8+10i \times(2-9i)=8\times 2-8 \times 9i+10i \times 2-10i \times 9i[/tex]

[tex]=16-72i+20i-90i^2[/tex]

since, [tex]i^2=-1[/tex]

we get,

[tex]16-72i+20i-90 \times (-1)=16-52i+90[/tex]

[tex]=106-52i[/tex]

Therefore,

[tex]2x \times y=106-52i[/tex]


x•y = 53-26i 2x•y = 106-52i

-x+3y= 2-32i

4x-y = 14+39i