The aluminum foil on a certain roll has a total area of 18.5 m 2 and a mass of 1275 g. using a density of 2.7 g per cubic centimeter for aluminum, determine the thickness in millimeters of the aluminum foil.

Respuesta :

We use formula, the volume of aluminium

[tex]Volume = \frac{mass}{density} \\\\ Area \times thickness = \frac{mass}{density} \\\\  thickness = \frac{mass}{ Area \times density}[/tex]

Given, [tex]m = 1275 \ g[/tex], [tex]Area = 18.5 m^2 =18.5 \times 10^4 mm^2[/tex] and  [tex]density =  2.7 \ g/cm^3 = 2.7 \times 10^{-3}  g/mm^3[/tex]

Substituting these values, we get

[tex]thickness = \frac{1275 \ g}{ 18.5 \times 10^4 mm^2 \times 2.7 \times 10^{-3}  g/mm^3} =  2.55 \ mm[/tex].

Thus, the thickness of the aluminium foil is 2.55 mm.

Answer:

The thickness in millimeters of the is 0.02552.

Explanation:

Area of an aluminum foil = A =[tex]18.5 m^2=185,000 cm^2[/tex]

[tex]1 m^2=10000 cm^2[/tex]

Mass of the assuming foil = 1275 g

Volume of the aluminum foil = V

Thickness of the assuming foil = h

Density of the aluminum foil = [tex]2.7 g/cm^3[/tex]

[tex]Density=\frac{Mass}{Volume}[/tex]

[tex]2.7 g/cm^3=\frac{1275 g}{V}[/tex]

[tex]V = 472.222 cm^3[/tex]

Volume = Area × Depth

[tex]V=A\times h[/tex]

[tex]h=\frac{472.222 cm^3}{185,000 cm^2}=0.002552 cm[/tex]

1 cm = 10 mm

h = 0.02552 mm

The thickness in millimeters of the is 0.02552.