acceleration of the object is given as
[tex]a = 5t\hat i + 6 t\hat j[/tex]
at t = 0 its position vector is
[tex]r_i = 29 \hat i 45 \hat j[/tex]
and its initial velocity is given as
[tex]v_i = 5.5\hat i + 3.10\hat j[/tex]
now in order to find the velocity we will integrate the acceleration
[tex]a = \frac{dv}{dt}[/tex]
[tex]v - v_i = \int a dt[/tex]
[tex]v - (5.5\hat i + 3.10\hat j) = \int 5t \hat i + 6t \hat j dt[/tex]
[tex]v = (5.5 + 2.5 t^2)\hat i + (3.10 + 3t^2)\hat j[/tex]
at t = 5.20
[tex]v = 73.1 \hat i + 84.22\hat j[/tex]
now position vector is integration of velocity
[tex]v = \frac{dr}{dt}[/tex]
[tex]r - (29 \hat i + 45 \hat j) = \int v dt[/tex]
[tex]r = (29 \hat i + 45 \hat j) + \int ((5.5 + 2.5 t^2)\hat i + (3.10 + 3t^2)\hat j)dt [/tex]
[tex]r = (29 + 5.5t + 0.833 t^3)\hat i + (45 + 3.10t + t^3)\hat j[/tex]
at t = 5.20 s
[tex]r = 174.7 \hat i + 201.7\hat j[/tex]
Part b)
now in order to find the direction
[tex]\theta = tan^{-1}\frac{v_y}{v_x}[/tex]
[tex]\theta = tan^{-1}\frac{84.22}{73.1} = 49 degree[/tex]