-21, - 13, - 5, 3, 5, ....
using the nth term formula for an arithmetic sequence
[tex]a_{n}[/tex] = [tex]a_{1}[/tex] + (n - 1)d
we require to find [tex]a_{1}[/tex] and d
[tex]a_{5}[/tex] = [tex]a_{1}[/tex] + 4d → (1)
[tex]a_{50}[/tex] = [tex]a_{1}[/tex] + 49d → (2)
subtract equation (1) from equation (2)
45d = 360 ⇒ d = [tex]\frac{360}{45}[/tex] = 8
substitute d = 8 into equation (1)
[tex]a_{1}[/tex] + 32 = 11
[tex]a_{1}[/tex] = 11 - 32 = - 21
- 21, - 13, - 5, 3, 11 are the first 5 terms of the required sequence.