Respuesta :

let us consider

[tex]\vec{A} = sint\hat{i}+cost\dot{j}+ t\hat{k}\ ,\vec{B} =cost\hat{i} + sint\hat{j}[/tex]

now we have to evaluate

[tex]\vec{A}\times \vec{B}[/tex]

To proof =

[tex]\vec{A}\times \vec{B}=\begin{vmatrix}i &j &k \\ sint&cost &t \\ cost&sint &0 \end{vmatrix}[/tex]

now solving the determinant form

we get

=[tex]\hat{i}\left ( -sint \right )-\hat{j}\left ( -tcost \right )+\hat{k}\left ( sin^{2}t - cos^{2}t\right )[/tex]

by using the formula

[tex]sin^{2}t + cos^{2}t = 1[/tex]

[tex]cos^{2}t = sin^{2} t - 1[/tex]

put this value in the above equation

we get

=[tex]\hat{i}\left ( -sint \right )+\hat{j}\left ( tcost \right )+\hat{k}\left ( 2sin^{2}t - 1\right )[/tex]

Hence proved